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An Integro-Differential Equation Approach to Acoustic Scattering 
from Fluid-Immersed Elastic Bodies 

G. J. BURKE*, E. K. MILLER+, A. J. POGGIO*, G. M. PJ~ROU~, B. J. MAXUM*, 
AND W. MEECHAM** 

An integro-differential equation approach for solving problems of acoustic scattering 
and radiation from fluid-immersed elastic bodies is described. A consistent set of integral 
and differential equations relating the incident pressure field to the surface pressure and 
displacements is developed for a submerged elastic spherical shell and results obtained 
using a numerical solution technique are compared with the classical modal expansion 
solution. 

I. INTRODUC~~N 

The evaluation of acoustic wave scattering from complex shaped objects has 
become realizable in the past few years due to the increasing availability of digital 
computers. In particular, integral equation techniques have received increasing 
attention because of the flexibility which they bring to this general problem area. 

While the numerical solution of the acoustic problem for rigid and free-surface 
bodies is relatively straightforward, the corresponding problem of acoustic scat- 
tering from elastic shells is by comparison much more difficult and has received 
less attention. Certainly a great deal of success has been achieved in the analysis 
of elastic structures from the viewpoint of vibration analysis, but the related 
problem of the fluid-coupled elastic structure has apparently not been as exten- 
sively treated. 

Our concern in this presentation will be the outline of an integro-differential 
equation (IDE) approach to the scattering of a time-harmonic plane acoustic wave 
from an elastic spherical shell. Numerical results obtained from the IDE will be 
validated by comparison with the classical series solution obtained from the 
separation of variables approach. An advantage of the IDE is its extendability to 
more general geometrical shapes. Thus, while the numerical results which follow 
are restricted to the spherical case so that the validity of the IDE approach can be 
established by comparison with the rigorously correct solution, their real signifi- 
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cance lies in the inherent potential of the method for the treatment of more general, 
and thus more practically interesting, body shapes. Integro-differential equations 
have, it should be noted, been numerically treated elsewhere in different contexts 
(Kogan, 1969; Khabbaze, 1970). 

II. MATHEMATICAL DEVELOPMENT 

The analytic solution, i.e., a closed form expression in terms of standard func- 
tions (which may involve series with infinite indices), of the three dimensional 
elastic shell problem can be carried out for only the limited number of shapes 
whose surfaces coincide with constant coordinate surfaces in separable coordinate 
systems (Morse and Feshbach, 1953). Consequently, the analysis of more general 
three-dimensional elastic shells requires the availability of a method which is not 
restricted to certain geometries. 

The integral equation approach which has found widespread use in electro- 
magnetic theory (Poggio and Miller, 1970), is also well suited to the acoustics 
regime (see Schenck, 1968, for example). It is an integral equation method to which 
this paper is primarily devoted. We will, however, make use of an analytical 
approach in order to make available independent data for the validation of results. 

A. The Integral Representation for Acoustic Scattering 

Our main interest in this section is to derive an integral equation relating the 
acoustic fields over a surface to some driving source. Let us consider then the 

Origin 

FIG. 1. Geometry for integral representations. 
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geometry shown in Fig. 1. The volume V is a source-free region containing a 
homogeneous fluid of density p exterior to the surface S. It is well known that the 
pressure p(T;,,) at a point ?,, within V but not on S is given by (Baker and Copson, 
1950) 

with Y, representing a point on the surface S, dA, the differential element of area, 
ri, a unit normal from the surface into the volume, ti the normal velocity, and G, 
the Green’s function given by 

G(F,, Y,) = exp[--ik 1 T;, - r, 1111 i;,, - F, / . 

k is the acoustic wave number, i.e., k = w/c where w is the angular frequency 
(eiUt time variation assumed), and c the propagation velocity in the fluid. The 
implication of Eq. (1) is that the pressure at any point in space outside S can be 
found by a surface integration of the pressure and velocity distributions over S. 
Hence, p(?J and ti(?,) are oftentimes referred to as source distributions on S, over 
which they satisfy the boundary condition 

ap(rJ/an, = -iwpw(~,). (2) 

If the surface S represents a passive scatterer then the surface source distributions 
must be induced by some external mechanism. In the present analysis we consider 
that there exists a pressure field denoted by Pinc(i;o), i.e., an incident pressure field, 
which induces the equivalent sources on S. Then the total pressure at any point 
outside S is given by 

with Y,, within I’ but not on S. 
In general, the pressure and velocity distributions due to an impinging wave on 

a surface are unknown and so must be found before the total pressure field in the 
fluid can be determined. One method of accomplishing this is the derivation of an 
integral equation from (3) by allowing the observation point F, to approach the 
surface S. The contribution of the integral term in (3) in the limit as F, -+ S can be 
expressed as [Kellog, 1953, p. 1671 

where Es is the principal value integral defined as Is ( ) do = lim,,, jssAs ( ) da 
in which dS is a small element of area about the point ?, = ?, . 
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In view of this limiting procedure, Eq. (3) becomes 

with ?O E S, i.e., Y, on the surface S. Equation (4) is the desired integral equation for 
the unknown surface pressure p in terms of the incident pressure field and the 
normal velocity over S. It remains to relate p and ti as functions of the surface 
coordinates to allow a solution of (4) for either p or ti. (While Eq. (2) could 
evidently be used to reduce Eq. (4) to an integral equation involvingp and ap/&z, 
alone, the mixed boundary value problem this represents would still require a 
treatment equivalent to that which follows to find the influence of the shell 
boundary on the surface distribution of the induced sources. We thus choose to 
continue with a formulation in terms of p and zi)). 

B. The Integro-Differential Equation Approach 

Because of our interest in scattering by a spherical shell of an axially incident 
plane wave, let us specialize Eq. (4) to this geometry (see Fig. 2). 

l- 
P 

inc 

FIG. 2. Geometry for scattering by a spherical shell. 
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Thus, for a sphere of radius a we obtain 

i- & f !~(a, @) & G - w2pw(a, 0’) Gf a2 dq~’ d0’ sin 8’, (5) 

where the azimuthal symmetry in F about the polar axis is exploited by 
writing p and w as functions of 8 only. Since no simple local relationship exists 
between p and W, which globally interact over S, an impedance boundary condition 
approximation cannot be used to reduce (5) to an equation in p (or W) alone. An 
additional equation which relates p and w is necessary to complete the formulation 
of the scattering process for an elastic spherical shell. 

Let us restrict in this analysis our attention to a spherical shell of thickness d 
where the shell is thin enough such that: (1) Radial normal stresses and bending 
moments can be neglected; and (2) The deformations fall within the regime of the 
linear equations of motion. Baker (1961) and Baker et al. (1966) present the equa- 
tions of motion for such a spherical shell of radius a and density ps . Using the 
geometrical definitions of Fig. 2 (with 21 the d-directed surface displacement and w 
the radially directed surface displacement) these can be written as 

g + cot e 2 + (AW2 - 
dw u - COP e) v + (1 + V> -Jjj- = 0, 

$ + v cot 0 + 12 - E/ w + 4~ = 0, 

(6) 

(7) 

where u is Poisson’s ratio, B = (1 - V) a2/Yd, Y is Young’s modulus, and 
A = [(l - I+)/ yl p&. 

The two differential Eqs. (6) and (7), together with integral Eq. (5), provide three 
equations for the unknown quantities V, w and p. Taken together, these equations 
form a coupled set for the spherical elastic shell. An attractive alternative is avail- 
able by solving (6) and (7) for u in terms of dw/d8 and dp/dO and by substituting 
the resulting expression into (7). One then arrives at a single differential equation of 
the form 

E(d2w/d02) + E cot 8(dw/d@ + Dw + F(d2p/d02) + Fcot O(dp/dt’) + Bp = 0, (8) 

where 

E = [v - 1 + /W/(1 + v)]/(v - 1 - Ao2), 
F = B/(v - 1 - Awz), 
D = 2 - [Awa/(l + u)]. 
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Either of the sets [Eqs. (S)-(7) or Eqs. (5) and (S)] shall be referred to as the 
integro differential equation for the scattering problem. It should be pointed out 
here that although Equation (4) is a general equation which pertains to any 
geometry, the equations of motion are more restricted in their applicability to the 
spherical shell case only. For complete generality it would be necessary to formulate 
the differential equations of motion for an arbitrarily shaped shell. 

The pressure field scattered by the obstacle S can then be evaluated by sub- 
stituting the surface pressure and displacement into Eq. (1). The far-zone radiation 
field& is obtained from (1) in the usual way, i.e., 

so that 

fm(io) = -& exp(-jkr,,) 1 [jk@’ . ?J p(i;,) - ~+w(r’~)] exp(jk+,, . ?J ds’. (9) 
s 

Once the integro-differential equation is solved, the far zone field is easily evaluated 
by performing the integration indicated above. The acoustic scattering cross 
section, u, for a unit amplitude incident wave, as defined by 

is also easily determined. 

C. The Harmonic Expansion Approach 

An alternate method is included here for use in the validation of the integro 
differential equation (IDE) method. The harmonic expansion method is ideally 
suited to the problem since the shell surfaces conform with complete coordinate 
surfaces in a separable geometry and hence insure separability of the wave equation. 

The theory of three-dimensional elasticity rather than the thin shell theory is 
used in this approach to the scattering problem since the wave behavior within 
the shell is explicitly considered. Hence the presence of compressional and shear 
waves is allowed and accounted for in the elastic material. On the other hand, in 
the IDE approach we considered only the outer surface effects as defined by the 
thin shell theory. 

The complete details of the mathematical analysis are given elsewhere (Goodman 
et al 1960). The important features are that the wave equation is separable, that 
there is symmetry in the CJJ coordinate, and that the solution for the displacement 
vector can be written as 

ii=v@+vxtJ, 
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where @ is a scalar potential and $ a vector potential. The solutions for the poten- 
tials, due to separability, can be written as 

@ = f Pdcos Whidkr) + &Gr)l, 
l=O 

and 

where P1 (cos 6) is the Legendre polynomial of the first kind and j,(kr) and n,(kr) 
are spherical Bessel functions of the first and second kind, respectively. Equations 
of this type can be written for each region but the # potential exists only where 
shear waves can be supported, which in our problem is in the shell only. 

Since each expansion contains two unknown coefficients for each index I, it is 
necessary to specify boundary conditions in order to allow for their determination. 
Two of these conditions are provided by the radiation condition at infinity and the 
requirement that the field be finite at the origin. In addition to these conditions, it 
is also necessary that the displacement and the stress tensor be continuous at the 
interfaces. These specified conditions are sufficient for the determination of the 
coefficients in the expansions. 

The quantities of most interest, i.e., the far-field pressure amplitude and the 
scattering cross section, are easily determined. The equations are written here for 
convenience; the derivations are found in Goodman et al (1960). 

The scattering cross section of an elastic sphere is given by 

cl = g 1 -f (-iy+l A,‘P,(cos ef 
l=O 

where k is the propagation constant in the exterior fluid and Al* is the expansion 
coefficient of the Ith order spherical Hankel function. 

The far-field pressure amplitude is related to the scattering cross section and is 
given by 

I.6 I = 2/s = $g 1 go (-v+l ~,‘Pdcos e)l (12) 

Extensive numerical computations for elastic spheres and spherical shells based 
upon the harmonic expansion discussed above have been presented by Hickling 
(1962, 1964), and Diercks and Hickling (1967) and Hickling and Means (1968). 
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III. NUMERICAL SOLUTION TECHNIQUE 

A. The General Procedure 

The solution method for the coupled equations previously developed follows 
that of the method of moments. The linear integral Eq. (5) can be written in 
operator notation as 

Lp[p(@)] + L,[W(e’)] - 1/2p(e) + Pine(e) = 0, (13) 

where L, and L, represent the linear operators which act on p and w, respectively. 
The unknown functions can be represented by an expansion in basis or trial 
functions as 

N 

(14) 

where the a, and b, are constants to be determined and the functions ~~(0’) and 
w,(P) are independent in the domain of the operator. A residual error can be 
defined [Fenlon (1969)] as 

(15) 

where the linearity of L, and L, has been used to interchange the summation and 
integration. If one defines an inner product over a surface S of two functions X 
and Y as 

(X, Y) = jj XY da 
S 

one can, by taking the inner product of Equation (15) with a set of A4 weighting 
or testing functions {tm} in the range of the operator L, write 

Furthermore, if the projection of the residual error on the space of the weight 
functions is set to zero, one has an equation which can be cast in the form 

Z(P) . A + Z(w) . B = p(iV, (17) 
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where the elements of Z(e) and ZW are given by 

zCp) = <t mn L [P WI - 4P m m, p n n 

zCw’ = (t, ) L.,[w,(tq] ?nn 

and those of Pcinc) are given by 

pc) = m --XL 9 Pin&w 

The original operator equation has thus been reduced to a linear system of M 
equations in 2N unknowns. 

Equation (17) thus replaces the integral Eq. (5) for the purpose of our numerical 
solution. A similar treatment of Eq. (8) [or of Eqs. (6) and (7)] will then complete 
the reduction of the integro-differential equation to linear system form. Substitution 
of (14) into (8) leads to 

z(a) . A = --Ztb) * B, (18) 

where 

zz = (L, [E (--$ + cot 8) + D] %), 

z~~=(t,,[F~~+cote)+B]p,). 

Equations (17) and (18) together represent then 2M equations in 2N unknowns so 
that with M = N a deterministic linear system is obtained for the 2N constants 
contained in A and B. This system can be simultaneously solved for A and B; for 
example, A could be found from Eq. (18) in terms of B after which B is obtained 
from Eq. (17). 

Fenlon (1969) has tabulated some of the more common pairs of functions used 
for solving integral equations. In the present analysis a subsectional collocation 
technique was used. In this particular method, the weight functions were chosen 
to be a set of delta functions, 

t, = S(b) - em> ; in = I,..., N 

and the basis were chosen as 

(19) 

where LIB, is a small interval centered at 8, . 
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Note that the union of all the de, (which are all taken to be equal of value AO) 
covers the domain of the operator. For instance, if the function&Q is a continuous- 
ly varying function, then the series in Eq. (14) with the basis functions given by 
Eq. (19) approximates p(B) by a series of steps. 

The interaction matrix elements in Eq. (17) Z(p) and ZW are thus obtained by 
straightforward numerical integration or quadrature over azimuthal strips of 
width de. Similarly, the elements of Z@) and Z@) which appear in (18) are found 
using a finite difference form for the differential operators which appear in them. 
In essence then, the approach described here results in enforcing the integro- 
differential equation at N discrete points at whichp and w are evaluated. 

B. Specifics of the Present Problem 

In order to implement the procedures described, we first subdivide the sphere 
into a number (N) of bands as shown in Fig. 3 such that the center of each band 
is given by 

Bi = (i - l/2) ~/iv, i = 1, 2,..., N w-9 

and the width is given by Atl = n/N. 

FIG. 3. Subdivision of the spherical scattering surface. 

Since the pressure and velocity on the surface are independent of azimuthal 
coordinate (y), 

~(a, e d -P(u, 0, 

~62, of, d - W(U, 0 

581/10/r-3 
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and since we are using the pulse approximation for the functions within each band, 
we can write 

N 

(21) 

W(U, 0’) = i WiU(Oi’), 
i=l 

where 

Wi’) = 1, z 2 8. - de < fy < 8. + !! z 2 ’ 

= 0, elsewhere. 

By choosing the weight functions to be as defined in Eq. (IB), and by substituting 
Eqs. (5), (18) and (21) into Eq. (16) with (t, , e) = 0, one arrives at 

N 
-47qp = AlI 

--@pi + C 2a” sin Bj sin _ 
j=l 2 

where 
i = I, 2 ,..., N, (22) 

Rii = I 70(k) - J,@j , #)I 

= [2a2(1 + sin ei sin 0, cos CJJ’ + cos 13~ cos 0,)]““. 

Equation (22) represents N simultaneous linear equations of the 2 N unknowns, 
pi and wi . The evaluation of the integrals over the azimuthal coordinate can be 
carried out using a standard quadrature technique. In the band containing the 
singularity, the principal value nature of the integral must be taken into account. 
This can be accomplished in practice by considering 

and by evaluating the integral in the limit AS -+ 0 to ensure that it approaches a 
constant limiting value. 

The introduction of additional equations to provide a consistent system for 
solution can proceed in a similar fashion. Evaluation of Eq. (8) at the prescribed 
Bi (i = 1, 2,..., iV) gives rise to an additional N equations in w and p. 
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We then have 

33 

+Fgj ~+Fcote,~/ +Bp(eJ=o, i = l,..., N. (23) 
0, 0, 

The differential operators can be represented by finite differences of any desired 
order. For instance, if we write 

d2w -- 
de2 oi = & bi+1 - 2wi + wi-11, 

then (23) becomes 

E 1 
( 

cot 8. 
m-de+-? 1 wi+1 + (- -g 

cot e. 
+ D) wi + (& - + wiwl 

F 1 -- - 
de de + ( =p)PiLl + (- g 

i = 1, 2 ,..., N. (24) 

The coupled set of equations represented by Eqs. (22) and (23) are easily written in 
matrix form so that they can be solved numerically for the surface pressure and 
normal displacement. This equation, in the form of (17), can then be solved for the 
unknown vector [A] by inversion, factorization, or iteration. The matrix [Z] has a 
dimensionality of 2N, but the portion of the matrix associated with the differential 
equations is sparse. In fact of the (2N)2 elements in [Z], only 2N2 + 6N elements 
are nonzero. When solving the matrix equation this characteristic of [Z] should be 
taken into account since it can lead to a substantial reduction of the matrix fill and 
solution time. 

The radiation field at a point (r,, , 8, , y,,) can be evaluated by reducing the 
integral in Eq. (9) to a summation over bands in the form 
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II = [j27rAJ,(kaA) + 277BJ,(kaA)J eii’uB, 

I2 = 27fJ&xzA) ejkaB, 

A = sin Bi sin B,, , 
B = cos di cos o,, , 

with J,, and J1 representing Bessel functions of zeroeth and first order, respectively. 
Note that the above equation is independent of q0 since the problem possesses 
azimuthal symmetry. The scattering cross section is then the squared magnitude of 
the above multiplied by 47~. Similarly, the far field pressure amplitude I fW / is deter- 
mined from I& 1 = ~/o/rraz. 

IV. NUMERICAL RESULTS 

As mentioned above, the analytical treatment has been included in order to 
provide independent data for validating the IDE calculations. Results obtained 
using the analytical approach (harmonic expansions) have been extensively tested 
against published data available in the literature. The agreement which was 
realized in these tests allows full confidence to be placed in the computer program 
for the harmonic expansion approach to the elastic body scattering problem. 

The data to be presented is intended to illustrate the accuracy of the IDE 
approach. In all cases the matrix equation was solved using factorization, a proce- 
dure which results in a solution time proportional to N3/3. The matrix elements 
corresponding to the integral equation were computed by using a Romberg 
variable interval width technique (Miller, 1970). In the bands containing the 
singularity this same technique was used but a region around the singularity was 
excluded. The contribution of this excluded region was then evaluated using a 
rectangular rule integration with the singular point removed. This scheme for 
handling the singularity was tested by changing the integration sample density 
around the point f, = F, and by considering the stability of the result. It was found 
that for a square region around the singularity of width r/N, a sample density of 
nine (with the singular point removed) was sufficient. 

Preliminary calculations using the IDE approach were performed for the rigid 
(W = 0) and free-surface (p = 0) sphere. In each case the dimensionality of the 
coupled Eqs. (22) and (24) becomes N, since these limiting cases correspond to an 
uncoupled system with either p or w as the only unknown in the integral equation. 
Furthermore, the differential equation becomes homogeneous in p or w under these 
conditions. The results obtained are shown in Fig. 4 compared with the published 
data of Goodman et al. (1966). The agreement is especially significant since it 
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FIG. 4. Far-field pressure amplitude fox a rigid and free-surface sphere. 

demonstrates the accuracy with which the integral equation, including the influence 
of the singularities, is solved. These calculations do not, however, establish the use- 
fulness of the IDE approach for elastic shells, since the differential equations for 
the elastic shell are of course not involved in the rigid- and free-sphere cases. A 
series of additional calculations using the analytical and IDE approaches were 
carried out to further validate the IDE results for elastic shells. 

Since the IDE approach is derived on the basis that d < a, it is important in 
these initial calculations to establish the accuracy dependence of the IDE results 
on this ratio. We show in Figs. 5, 6 and 7 the acoustic cross section u/rra2, as a 

FIG. 5. Backscatter cross section versus normalized thickness of a fluid-immersed spherical 
shell for ku = 0.38. 
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ka = 0.11 

20- - ANALYTICAL 

--- IDE 
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------ 
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FIG. 6. Backscatter cross section versus normalized thickness of a fluid-immersed spherical 
shell for ka = 0.77. 

FIG. 7. Backscatter cross section versus normalized thickness of a fluid-immersed spherical 
shell for ka = 1.53. 
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function of d/a for steel shells with vacuum interiors and ka values of 0.38, 0.77 
and 1.53, The shell parameters used were 

Y = 19.67 x loll dynes/cm2, 
v = 0.3, 

P, = 7.70 g/cm3. 

Those for sea water used were 

p = 1.02 g/cm”. 

The data plotted here is presented in terms of the nondimensional quantities 
A/a, ka and +ra2, since the scattering properties of bodies with frequency indepen- 
dent acoustic parameters are scalable. 

The analytical values are shown by the solid curves while results obtained from 
the IDE approach are shown by dashed curves where they differ enough from the 
analytic data to be graphically resolved. It may be seen that the IDE results are in 
excellent agreement with the analytic values, both in the resonant peak structure as 
well as for values of A/a approaching 1, where it could be reasonably expected that 

10 

-30 
-ANALYTICAL 

ka 

FIG. 8. Backscatter cross section versus ka of a fluid-immersed spherical shell of normalized 
thickness 0.014. 
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the thin shell approximation made in the IDE approach would be incapable of 
accurately predicting the cross section. Possibly the special symmetry of the shell 
is responsible for the success of the IDE method for A/a N 1; we cannot safely 
extrapolate this finding to other shell shapes, however. 

Elastic shell cross section results versus normalized frequency ka are shown in 
Fig. 8 where the independent variable is now the incident wave frequency expressed 
in the shell circumference in wavelengths ka, and A/a is the parameter. Again 
excellent agreement is obtained between the two methods used to calculate u/n-a2. 
It is interesting to see that for frequencies below ka g 0.3, the Rayleigh region 
scattering law is verified, i.e., o/rra2cx(ka)4. 

The numerical difficulties which often occur at eigenfrequencies of the interior 
problem have not been encountered in this effort. One reason for this is that 
computations were not performed at the eigenfrequencies in the free and rigid 
sphere cases. In the elastic sphere calculations the coefficient matrix in the matrix 
equation was never observed to be approaching a singular condition, an indication 
that the matrix solution process did not involve operations on an ill-conditioned 
matrix. A study of this point would certainly be of great use in future investiga- 
tions. 

V. CONCLUSIONS 

The integro-differential equation approach has been applied to the problem of 
determining the scattering characteristics of the fluid-immersed elastic sphere. The 
technique has been shown to provide accurate results over a large range of shell 
thickness even though the thin shell approximation has been used in defining the 
pressure displacement relationship on the surface. The success of the IDE method 
suggests the applicability of the approach to the treatment of more general elastic 
structures, rotationally symmetric shells for example. Extension of the equations 
of motion to include bending moments as well as llexural shell motion for more 
complicated shell shapes will further increase the applicability of the method. By 
combining the IDE treatment with conventional vibration analysis techniques, it 
appears feasible to obtain the acoustic cross section of fairly complicated shell 
geometries, including the effects of internal structural characteristics. Any extension 
to more complicated structures will necessarily include a study of the integral 
equation sample density requirements. 
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